Computer Science > Machine Learning
[Submitted on 1 Aug 2021 (v1), last revised 25 May 2022 (this version, v2)]
Title:DeepTrack: Lightweight Deep Learning for Vehicle Path Prediction in Highways
View PDFAbstract:Vehicle trajectory prediction is essential for enabling safety-critical intelligent transportation systems (ITS) applications used in management and operations. While there have been some promising advances in the field, there is a need for modern deep learning algorithms that allow real-time trajectory prediction on embedded IoT devices. This article presents DeepTrack, a novel deep learning algorithm customized for real-time vehicle trajectory prediction and monitoring applications in arterial management, freeway management, traffic incident management, and work zone management for high-speed incoming traffic. In contrast to previous methods, the vehicle dynamics are encoded using Temporal Convolutional Networks (TCNs) to provide more robust time prediction with less computation. DeepTrack also uses depthwise convolution, which reduces the complexity of models compared to existing approaches in terms of model size and operations. Overall, our experimental results demonstrate that DeepTrack achieves comparable accuracy to state-of-the-art trajectory prediction models but with smaller model sizes and lower computational complexity, making it more suitable for real-world deployment.
Submission history
From: Mohammadreza Baharani [view email][v1] Sun, 1 Aug 2021 17:33:04 UTC (278 KB)
[v2] Wed, 25 May 2022 20:03:30 UTC (6,884 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.