Computer Science > Machine Learning
[Submitted on 2 Aug 2021 (v1), last revised 17 Sep 2023 (this version, v2)]
Title:Exact Pareto Optimal Search for Multi-Task Learning and Multi-Criteria Decision-Making
View PDFAbstract:Given multiple non-convex objective functions and objective-specific weights, Chebyshev scalarization (CS) is a well-known approach to obtain an Exact Pareto Optimal (EPO), i.e., a solution on the Pareto front (PF) that intersects the ray defined by the inverse of the weights. First-order optimizers that use the CS formulation to find EPO solutions encounter practical problems of oscillations and stagnation that affect convergence. Moreover, when initialized with a PO solution, they do not guarantee a controlled trajectory that lies completely on the PF. These shortcomings lead to modeling limitations and computational inefficiency in multi-task learning (MTL) and multi-criteria decision-making (MCDM) methods that utilize CS for their underlying non-convex multi-objective optimization (MOO). To address these shortcomings, we design a new MOO method, EPO Search. We prove that EPO Search converges to an EPO solution and empirically illustrate its computational efficiency and robustness to initialization. When initialized on the PF, EPO Search can trace the PF and converge to the required EPO solution at a linear rate of convergence. Using EPO Search we develop new algorithms: PESA-EPO for approximating the PF in a posteriori MCDM, and GP-EPO for preference elicitation in interactive MCDM; experiments on benchmark datasets confirm their advantages over competing alternatives. EPO Search scales linearly with the number of decision variables which enables its use for training deep networks. Empirical results on real data from personalized medicine, e-commerce and hydrometeorology demonstrate the efficacy of EPO Search for deep MTL.
Submission history
From: Debabrata Mahapatra [view email][v1] Mon, 2 Aug 2021 02:13:21 UTC (5,143 KB)
[v2] Sun, 17 Sep 2023 13:29:55 UTC (8,800 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.