Computer Science > Hardware Architecture
This paper has been withdrawn by Veerendra S Devaraddi
[Submitted on 2 Aug 2021 (v1), last revised 10 Aug 2021 (this version, v2)]
Title:Analysing digital in-memory computing for advanced finFET node
No PDF available, click to view other formatsAbstract:Digital In-memory computing improves energy efficiency and throughput of a data-intensive process, which incur memory thrashing and, resulting multiple same memory accesses in a von Neumann architecture. Digital in-memory computing involves accessing multiple SRAM cells simultaneously, which may result in a bit flip when not timed critically. Therefore we discuss the transient voltage characteristics of the bitlines during an SRAM compute. To improve the packaging density and also avoid MOSFET down-scaling issues, we use a 7-nm predictive PDK which uses a finFET node. The finFET process has discrete fins and a lower Voltage supply, which makes the design of in-memory compute SRAM difficult. In this paper, we design a 6T SRAM cell in 7-nm finFET node and compare its SNMs with a UMC 28nm node implementation. Further, we design and simulate the rest of the SRAM peripherals, and in-memory computation for an advanced finFET node.
Submission history
From: Veerendra S Devaraddi [view email][v1] Mon, 2 Aug 2021 10:50:36 UTC (310 KB)
[v2] Tue, 10 Aug 2021 12:12:04 UTC (1 KB) (withdrawn)
Current browse context:
cs.AR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.