Computer Science > Machine Learning
[Submitted on 30 Jul 2021]
Title:Indexability and Rollout Policy for Multi-State Partially Observable Restless Bandits
View PDFAbstract:Restless multi-armed bandits with partially observable states has applications in communication systems, age of information and recommendation systems. In this paper, we study multi-state partially observable restless bandit models. We consider three different models based on information observable to decision maker -- 1) no information is observable from actions of a bandit 2) perfect information from bandit is observable only for one action on bandit, there is a fixed restart state, i.e., transition occurs from all other states to that state 3) perfect state information is available to decision maker for both actions on a bandit and there are two restart state for two actions. We develop the structural properties. We also show a threshold type policy and indexability for model 2 and 3. We present Monte Carlo (MC) rollout policy. We use it for whittle index computation in case of model 2. We obtain the concentration bound on value function in terms of horizon length and number of trajectories for MC rollout policy. We derive explicit index formula for model 3. We finally describe Monte Carlo rollout policy for model 1 when it is difficult to show indexability. We demonstrate the numerical examples using myopic policy, Monte Carlo rollout policy and Whittle index policy. We observe that Monte Carlo rollout policy is good competitive policy to myopic.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.