Mathematics > Optimization and Control
[Submitted on 2 Aug 2021 (v1), last revised 17 Apr 2023 (this version, v3)]
Title:Prescribing net demand for two-stage electricity generation scheduling
View PDFAbstract:We consider a two-stage generation scheduling problem comprising a forward dispatch and a real-time re-dispatch. The former must be conducted facing an uncertain net demand that includes non-dispatchable electricity consumption and renewable power generation. The latter copes with the plausible deviations with respect to the forward schedule by making use of balancing power during the actual operation of the system. Standard industry practice deals with the uncertain net demand in the forward stage by replacing it with a good estimate of its conditional expectation (usually referred to as a point forecast), so as to minimize the need for balancing power in real time. However, it is well known that the cost structure of a power system is highly asymmetric and dependent on its operating point, with the result that minimizing the amount of power imbalances is not necessarily aligned with minimizing operating costs. In this paper, we propose a bilevel program to construct, from the available historical data, a prescription of the net demand that does account for the power system's cost asymmetry. Furthermore, to accommodate the strong dependence of this cost on the power system's operating point, we use clustering to tailor the proposed prescription to the foreseen net-demand regime. By way of an illustrative example and a more realistic case study based on the European power system, we show that our approach leads to substantial cost savings compared to the customary way of doing.
Submission history
From: Juan M. Morales Dr. [view email][v1] Mon, 2 Aug 2021 16:05:53 UTC (33 KB)
[v2] Mon, 21 Mar 2022 16:51:41 UTC (42 KB)
[v3] Mon, 17 Apr 2023 17:57:44 UTC (46 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.