Electrical Engineering and Systems Science > Systems and Control
[Submitted on 2 Aug 2021]
Title:Aircraft turnaround time estimation in early design phases: simulation tools development and application to the case of box-wing architecture
View PDFAbstract:This work deals with the problem of estimating the turnaround time in the early stages of aircraft design. The turnaround time has a significant impact in terms of marketability and value creation potential of an aircraft and, for this reason, it should be considered as an important driver of fuselage and cabin design decisions. Estimating the turnaround time during the early stages of aircraft design is therefore an essential task. This task becomes even more decisive when designers explore unconventional aircraft architectures or, in general, are still evaluating the fuselage design and its internal layout. In particular, it is of paramount importance to properly estimate the boarding and deboarding times, which contribute for up the 40% to the overall turnaround time. For this purpose, a tool, called SimBaD, has been developed and validated with publicly available data for existing aircraft of different classes. In order to demonstrate SimBaD capability of evaluating the influence of fuselage and cabin features on the turnaround time, its application to an unconventional box-wing aircraft architecture, known as PrandtlPlane, is presented as case study. Finally, considering standard scenarios provided by aircraft manufacturers, a comparison between the turnaround time of the PrandtlPlane and the turnaround time of a conventional competitor aircraft is presented.
Submission history
From: Marco Picchi Scardaoni [view email][v1] Mon, 2 Aug 2021 16:25:53 UTC (2,588 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.