Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 2 Aug 2021]
Title:A search for candidate strongly-lensed dusty galaxies in the Planck satellite catalogues
View PDFAbstract:The Planck sub-mm surveys detected the brightest strongly gravitationally lensed dusty galaxies in the sky. The combination of their extreme gravitational flux boosting and image stretching offers the unique possibility of measuring in detail, via high-resolution imaging and spectroscopic follow-up, the galaxy structure and kinematics in early evolutionary phases, thus gaining otherwise unaccessible direct information on physical processes in action. The extraction of candidate strongly lensed galaxies (SLGs) from Planck catalogues is hindered by the fact that they are generally detected with poor S/N, except for the few brightest ones, their photometric properties are strongly blurred and they are difficult to single out. We devised a method to increase by a factor of 3 to 4 the number of identified Planck-detected SLGs, although with an unavoidably limited efficiency. Our approach uses the fact that SLGs have sub-mm colours colder than nearby dusty galaxies (the large majority of Planck extragalactic sources). The sub-mm colours of the 47 confirmed or very likely Planck-detected SLGs are used to estimate the colour range of these objects. Moreover, most nearby galaxies and radio sources can be picked up by cross-matching with IRAS and PCNT catalogues, respectively. We present samples of 177, 97, 104 lensed candidates at 545, 857, 353 GHz, respectively. The efficiency of our approach, tested on the SPT survey covering 2,500 sq. deg., is estimated to be of 30%-40%. We also discuss stricter selection criteria increasing efficiency to 50% but with a somewhat lower completeness. Our analysis of SPT data has identified a dozen of galaxies that can be reliably considered previously unrecognized Planck-detected SLGs. Extrapolating the number of Planck-detected confirmed or very likely SLGs found within the SPT and H-ATLAS areas, we expect from 150 to 190 such sources over the|b|>20deg sky.
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.