Electrical Engineering and Systems Science > Signal Processing
[Submitted on 3 Aug 2021 (v1), last revised 12 Sep 2024 (this version, v2)]
Title:Dynamic Prediction Model for NOx Emission of SCR System Based on Hybrid Data-driven Algorithms
View PDFAbstract:Aiming at the problem that delay time is difficult to determine and prediction accuracy is low in building prediction model of SCR system, a dynamic modeling scheme based on a hybrid of multiple data-driven algorithms was proposed. First, processed abnormal values and normalized the data. To improve the relevance of the input data, used MIC to estimate delay time and reconstructed production data. Then used combined feature selection method to determine input variables. To further mine data information, VMD was used to decompose input time series. Finally, established NOx emission prediction model combining ELM and EC model. Experimental results based on actual historical operating data show that the MAPE of predicted results is 2.61%. Model sensitivity analysis shows that besides the amount of ammonia injection, the inlet oxygen concentration and the flue gas temperature have a significant impact on NOx emission, which should be considered in SCR process control and optimization.
Submission history
From: Yang Li [view email][v1] Tue, 3 Aug 2021 01:38:43 UTC (1,466 KB)
[v2] Thu, 12 Sep 2024 10:42:22 UTC (1,575 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.