Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 3 Aug 2021]
Title:MixMicrobleedNet: segmentation of cerebral microbleeds using nnU-Net
View PDFAbstract:Cerebral microbleeds are small hypointense lesions visible on magnetic resonance imaging (MRI) with gradient echo, T2*, or susceptibility weighted (SWI) imaging. Assessment of cerebral microbleeds is mostly performed by visual inspection. The past decade has seen the rise of semi-automatic tools to assist with rating and more recently fully automatic tools for microbleed detection. In this work, we explore the use of nnU-Net as a fully automated tool for microbleed segmentation. Data was provided by the ``Where is VALDO?'' challenge of MICCAI 2021. The final method consists of nnU-Net in the ``3D full resolution U-Net'' configuration trained on all data (fold = `all'). No post-processing options of nnU-Net were used. Self-evaluation on the training data showed an estimated Dice of 0.80, false discovery rate of 0.16, and false negative rate of 0.15. Final evaluation on the test set of the VALDO challenge is pending. Visual inspection of the results showed that most of the reported false positives could be an actual microbleed that might have been missed during visual rating. Source code is available at: this https URL . The docker container hjkuijf/mixmicrobleednet can be pulled from this https URL .
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.