Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 3 Aug 2021]
Title:A First Detection of the Connected 4-Point Correlation Function of Galaxies Using the BOSS CMASS Sample
View PDFAbstract:We present an $8.1\sigma$ detection of the non-Gaussian 4-Point Correlation Function (4PCF) using a sample of $N_{\rm g} \approx 8\times 10^5$ galaxies from the BOSS CMASS dataset. Our measurement uses the $\mathcal{O}(N_{\rm g}^2)$ NPCF estimator of Philcox et al. (2021), including a new modification to subtract the disconnected 4PCF contribution (arising from the product of two 2PCFs) at the estimator level. This approach is unlike previous work and ensures that our signal is a robust detection of gravitationally-induced non-Gaussianity. The estimator is validated with a suite of lognormal simulations, and the analytic form of the disconnected contribution is discussed. Due to the high dimensionality of the 4PCF, data compression is required; we use a signal-to-noise-based scheme calibrated from theoretical covariance matrices to restrict to $\sim$ $100$ basis vectors. The compression has minimal impact on the detection significance and facilitates traditional $\chi^2$-like analyses using a suite of mock catalogs. The significance is stable with respect to different treatments of noise in the sample covariance (arising from the limited number of mocks), but decreases to $4.7\sigma$ when a minimum galaxy separation of $14 h^{-1}\mathrm{Mpc}$ is enforced on the 4PCF tetrahedra (such that the statistic can be modelled more easily). The detectability of the 4PCF in the quasi-linear regime implies that it will become a useful tool in constraining cosmological and galaxy formation parameters from upcoming spectroscopic surveys.
Submission history
From: Oliver Henry Edward Philcox [view email][v1] Tue, 3 Aug 2021 18:00:00 UTC (1,319 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.