Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Aug 2021]
Title:An Empirical Evaluation of End-to-End Polyphonic Optical Music Recognition
View PDFAbstract:Previous work has shown that neural architectures are able to perform optical music recognition (OMR) on monophonic and homophonic music with high accuracy. However, piano and orchestral scores frequently exhibit polyphonic passages, which add a second dimension to the task. Monophonic and homophonic music can be described as homorhythmic, or having a single musical rhythm. Polyphonic music, on the other hand, can be seen as having multiple rhythmic sequences, or voices, concurrently. We first introduce a workflow for creating large-scale polyphonic datasets suitable for end-to-end recognition from sheet music publicly available on the MuseScore forum. We then propose two novel formulations for end-to-end polyphonic OMR -- one treating the problem as a type of multi-task binary classification, and the other treating it as multi-sequence detection. Building upon the encoder-decoder architecture and an image encoder proposed in past work on end-to-end OMR, we propose two novel decoder models -- FlagDecoder and RNNDecoder -- that correspond to the two formulations. Finally, we compare the empirical performance of these end-to-end approaches to polyphonic OMR and observe a new state-of-the-art performance with our multi-sequence detection decoder, RNNDecoder.
Submission history
From: Sachinda Edirisooriya [view email][v1] Tue, 3 Aug 2021 22:04:40 UTC (3,645 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.