Computer Science > Machine Learning
[Submitted on 4 Aug 2021]
Title:Parallelized Reverse Curriculum Generation
View PDFAbstract:For reinforcement learning (RL), it is challenging for an agent to master a task that requires a specific series of actions due to sparse rewards. To solve this problem, reverse curriculum generation (RCG) provides a reverse expansion approach that automatically generates a curriculum for the agent to learn. More specifically, RCG adapts the initial state distribution from the neighborhood of a goal to a distance as training proceeds. However, the initial state distribution generated for each iteration might be biased, thus making the policy overfit or slowing down the reverse expansion rate. While training RCG for actor-critic (AC) based RL algorithms, this poor generalization and slow convergence might be induced by the tight coupling between an AC pair. Therefore, we propose a parallelized approach that simultaneously trains multiple AC pairs and periodically exchanges their critics. We empirically demonstrate that this proposed approach can improve RCG in performance and convergence, and it can also be applied to other AC based RL algorithms with adapted initial state distribution.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.