Electrical Engineering and Systems Science > Systems and Control
[Submitted on 5 Aug 2021 (v1), last revised 20 Aug 2021 (this version, v2)]
Title:Variable-Speed Wind Turbine Control Designed for Coordinated Fast Frequency Reserves
View PDFAbstract:Modern power systems present low levels of inertia due to the growing shares of converter-interfaced generation. Consequently, renewable energy sources are increasingly requested to provide frequency support. In addition, due to the inertia loss, the requirements regarding frequency containment reserves (FCR) are becoming tough to meet with traditional units such as hydro, whose non-minimum phase (NMP) characteristic reduces the closed-loop stability margins. The shortcomings of traditional synchronous generation motivates new protocols for fast frequency reserves (FFR). In this work, we design a wind turbine (WT) model useful for FFR. It is shown that the dynamical shortcomings of the WT, in providing steady-power or slow FCR support, are suitably described by a first-order transfer function with a slow NMP zero. The WT model is tested in a 5-machine representation of the Nordic synchronous grid. It is shown that the NMP model is useful for designing a controller that coordinates FFR from wind with slow FCR from hydro turbines. By simulating the disconnection of a 1400 MW importing dc link in a detailed nonlinear model, it is shown that the wind--hydro combination not only satisfies the latest regulations, but also presents a smooth response avoiding overshoot and secondary frequency dips during frequency recovery.
Submission history
From: Joakim Björk [view email][v1] Thu, 5 Aug 2021 07:53:54 UTC (1,133 KB)
[v2] Fri, 20 Aug 2021 14:27:07 UTC (4,504 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.