Mathematics > Numerical Analysis
[Submitted on 29 Jul 2021 (v1), last revised 12 Dec 2021 (this version, v2)]
Title:Electromagnetic Modeling of Lossy Materials with a Potential-Based Boundary Element Method
View PDFAbstract:The boundary element method (BEM) enables solving three-dimensional electromagnetic problems using a two-dimensional surface mesh, making it appealing for applications ranging from electrical interconnect analysis to the design of metasurfaces. The BEM typically involves the electric and magnetic fields as unknown quantities. Formulations based on electromagnetic potentials rather than fields have garnered interest recently, for two main reasons: (a) they are inherently stable at low frequencies, unlike many field-based approaches, and (b) potentials provide a more direct interface to quantum physical phenomena. Existing potential-based formulations for electromagnetic scattering have been proposed primarily for perfect conductors. We develop a potential-based BEM formulation which can capture both dielectric and conductive losses, and accurately models the skin effect over broad ranges of frequency. The accuracy of the proposed formulation is validated through canonical and realistic numerical examples.
Submission history
From: Shashwat Sharma [view email][v1] Thu, 29 Jul 2021 20:15:44 UTC (2,220 KB)
[v2] Sun, 12 Dec 2021 00:43:25 UTC (2,802 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.