Astrophysics > Astrophysics of Galaxies
[Submitted on 5 Aug 2021]
Title:A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). IV. Rapidly Growing (Super-)Massive Black Holes in Extremely Radio-Loud Galaxies
View PDFAbstract:We present the optical and infrared properties of 39 extremely radio-loud galaxies discovered by cross-matching the Subaru/Hyper Suprime-Cam (HSC) deep optical imaging survey and VLA/FIRST 1.4 GHz radio survey. The recent Subaru/HSC strategic survey revealed optically-faint radio galaxies (RG) down to $g_\mathrm{AB} \sim 26$, opening a new parameter space of extremely radio-loud galaxies (ERGs) with radio-loudness parameter of $\log \mathcal{R}_\mathrm{rest} = \log (f_{1.4 \mathrm{GHz,rest}}/f_{g,\mathrm{rest}}) >4$. Because of their optical faintness and small number density of $\sim1~$deg$^{-2}$, such ERGs were difficult to find in the previous wide but shallow, or deep but small area optical surveys. ERGs show intriguing properties that are different from the conventional RGs: (1) most ERGs reside above or on the star-forming main-sequence, and some of them might be low-mass galaxies with $\log (M_\star/M_\odot) < 10$. (2) ERGs exhibit a high specific black hole accretion rate, reaching the order of the Eddington limit. The intrinsic radio-loudness ($\mathcal{R}_\mathrm{int}$), defined by the ratio of jet power over bolometric radiation luminosity, is one order of magnitude higher than that of radio quasars. This suggests that ERGs harbor a unique type of active galactic nuclei (AGN) that show both powerful radiations and jets. Therefore, ERGs are prominent candidates of very rapidly growing black holes reaching Eddington-limited accretion just before the onset of intensive AGN feedback.
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.