Mathematical Physics
[Submitted on 5 Aug 2021]
Title:The most likely evolution of diffusing and vanishing particles: Schrodinger Bridges with unbalanced marginals
View PDFAbstract:Stochastic flows of an advective-diffusive nature are ubiquitous in physical sciences. Of particular interest is the problem to reconcile observed marginal distributions with a given prior posed by E. Schrodinger in 1932/32 and known as the Schrodinger Bridge Problem (SBP). Due to its fundamental significance, interest in SBP has in recent years enticed a broad spectrum of disciplines. Yet, while the mathematics and applications of SBP have been developing at a considerable pace, accounting for marginals of unequal mass has received scant attention; the problem to interpolate between unbalanced marginals has been approached by introducing source/sink terms in an Adhoc manner. Nevertheless, losses are inherent in many physical processes and, thereby, models that account for lossy transport may also need to be reconciled with observed marginals following Schrodinger's dictum; that is, to adjust the probability of trajectories of particles, including those that do not make it to the terminal observation point, so that the updated law represents the most likely way that particles may have been transported, or vanished, at some intermediate point. Thus, the purpose of this work is to develop such a natural generalization of the SBP for stochastic evolution with losses, whereupon particles are "killed" according to a probabilistic law. Through a suitable embedding, we turn the problem into an SBP for stochastic processes that combine diffusive and jump characteristics. Then, following a large-deviations formalism, given a prior law that allows for losses, we ask for the most probable evolution of particles along with the most likely killing rate as the particles transition between the specified marginals. Our approach differs sharply from previous work involving a Feynman-Kac multiplicative reweighing of the reference measure: The latter, as we argue, is far from Schrodinger's quest.
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.