Computer Science > Information Theory
[Submitted on 6 Aug 2021]
Title:Anomaly Search with Multiple Plays under Delay and Switching Costs
View PDFAbstract:The problem of searching for $L$ anomalous processes among $M$ processes is considered. At each time, the decision maker can observe a subset of $K$ processes (i.e., multiple plays). The measurement drawn when observing a process follows one of two different distributions, depending on whether the process is normal or abnormal. The goal is to design a policy that minimizes the Bayes risk which balances between the sample complexity, detection errors, and the switching cost associated with switching across processes. We develop a policy, dubbed consecutive controlled sensing (CCS), to achieve this goal. On the one hand, by contrast to existing studies on controlled sensing, the CCS policy senses processes consecutively to reduce the switching cost. On the other hand, the policy controls the sensing operation in a closed-loop manner to switch between processes when necessary to guarantee reliable inference. We prove theoretically that CCS is asymptotically optimal in terms of minimizing the Bayes risk as the detection error approaches zero (i.e., the sample complexity increases). Simulation results demonstrate strong performance of CCS in the finite regime as well.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.