Computer Science > Machine Learning
[Submitted on 7 Aug 2021 (v1), last revised 24 Jan 2022 (this version, v2)]
Title:Efficient Representation for Electric Vehicle Charging Station Operations using Reinforcement Learning
View PDFAbstract:Effectively operating electrical vehicle charging station (EVCS) is crucial for enabling the rapid transition of electrified transportation. To solve this problem using reinforcement learning (RL), the dimension of state/action spaces scales with the number of EVs and is thus very large and time-varying. This dimensionality issue affects the efficiency and convergence properties of generic RL algorithms. We develop aggregation schemes that are based on the emergency of EV charging, namely the laxity value. A least-laxity first (LLF) rule is adopted to consider only the total charging power of the EVCS which ensures the feasibility of individual EV schedules. In addition, we propose an equivalent state aggregation that can guarantee to attain the same optimal policy. Based on the proposed representation, policy gradient method is used to find the best parameters for the linear Gaussian policy . Numerical results have validated the performance improvement of the proposed representation approaches in attaining higher rewards and more effective policies as compared to existing approximation based approach.
Submission history
From: Kyung-Bin Kwon [view email][v1] Sat, 7 Aug 2021 00:34:48 UTC (325 KB)
[v2] Mon, 24 Jan 2022 07:08:28 UTC (312 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.