Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Aug 2021]
Title:ContinuityLearner: Geometric Continuity Feature Learning for Lane Segmentation
View PDFAbstract:Lane segmentation is a challenging issue in autonomous driving system designing because lane marks show weak textural consistency due to occlusion or extreme illumination but strong geometric continuity in traffic images, from which general convolution neural networks (CNNs) are not capable of learning semantic objects. To empower conventional CNNs in learning geometric clues of lanes, we propose a deep network named ContinuityLearner to better learn geometric prior within lane. Specifically, our proposed CNN-based paradigm involves a novel Context-encoding image feature learning network to generate class-dependent image feature maps and a new encoding layer to exploit the geometric continuity feature representation by fusing both spatial and visual information of lane together. The ContinuityLearner, performing on the geometric continuity feature of lanes, is trained to directly predict the lane in traffic scenarios with integrated and continuous instance semantic. The experimental results on the CULane dataset and the Tusimple benchmark demonstrate that our ContinuityLearner has superior performance over other state-of-the-art techniques in lane segmentation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.