Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 8 Aug 2021]
Title:Master Graduation Thesis: A Lightweight and Distributed Container-based Framework
View PDFAbstract:Edge/Fog computing is a novel computing paradigm that provides resource-limited Internet of Things (IoT) devices with scalable computing and storage resources. Compared to cloud computing, edge/fog servers have fewer resources, but they can be accessed with higher bandwidth and less communication latency. Thus, integrating edge/fog and cloud infrastructures can support the execution of diverse latency-sensitive and computation-intensive IoT applications. Although some frameworks attempt to provide such integration, there are still several challenges to be addressed, such as dynamic scheduling of different IoT applications, scalability mechanisms, multi-platform support, and supporting different interaction models. To overcome these challenges, we propose a lightweight and distributed container-based framework, called FogBus2. It provides a mechanism for scheduling heterogeneous IoT applications and implements several scheduling policies. Also, it proposes an optimized genetic algorithm to obtain fast convergence to well-suited solutions. Besides, it offers a scalability mechanism to ensure efficient responsiveness when either the number of IoT devices increases or the resources become overburdened. Also, the dynamic resource discovery mechanism of FogBus2 assists new entities to quickly join the system. We have also developed two IoT applications, called Conway's Game of Life and Video Optical Character Recognition to demonstrate the effectiveness of FogBus2 for handling real-time and non-real-time IoT applications. Experimental results show FogBus2's scheduling policy improves the response time of IoT applications by 53\% compared to other policies. Also, the scalability mechanism can reduce up to 48\% of the queuing waiting time compared to frameworks that do not support scalability.
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.