Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Aug 2021]
Title:Hierarchical View Predictor: Unsupervised 3D Global Feature Learning through Hierarchical Prediction among Unordered Views
View PDFAbstract:Unsupervised learning of global features for 3D shape analysis is an important research challenge because it avoids manual effort for supervised information collection. In this paper, we propose a view-based deep learning model called Hierarchical View Predictor (HVP) to learn 3D shape features from unordered views in an unsupervised manner. To mine highly discriminative information from unordered views, HVP performs a novel hierarchical view prediction over a view pair, and aggregates the knowledge learned from the predictions in all view pairs into a global feature. In a view pair, we pose hierarchical view prediction as the task of hierarchically predicting a set of image patches in a current view from its complementary set of patches, and in addition, completing the current view and its opposite from any one of the two sets of patches. Hierarchical prediction, in patches to patches, patches to view and view to view, facilitates HVP to effectively learn the structure of 3D shapes from the correlation between patches in the same view and the correlation between a pair of complementary views. In addition, the employed implicit aggregation over all view pairs enables HVP to learn global features from unordered views. Our results show that HVP can outperform state-of-the-art methods under large-scale 3D shape benchmarks in shape classification and retrieval.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.