Electrical Engineering and Systems Science > Systems and Control
[Submitted on 9 Aug 2021]
Title:Coordination on Time-Varying Antagonistic Networks
View PDFAbstract:This paper studies coordination problem for time-varying networks suffering from antagonistic information, quantified by scaling parameters. By such a manner, interacting property of the participating individuals and antagonistic information can be quantified in a fully decoupled perspective, thus benefiting from merely directed spanning tree hypothesis is needed, in the sense of usual algebraic graph theory. We start with rigorous argument on the existence of weighted gain, and then derive relation among weighted gain, scaling parameter and Laplacian matrix guaranteeing antagonistic information cannot diverge system state. Based on these arguments, we devise coordination algorithm constrained by topology-dependent average time condition, thus relaxing the examination of directed spanning tree requirement for the union graph that is usually intractable. Moreover, the induced theoretical results are applied to time-varying networks with several mutually uninfluenced agents, in accompanying with some discussions and comparisons with respect to the existing developments.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.