Computer Science > Machine Learning
[Submitted on 9 Aug 2021 (v1), last revised 11 Sep 2022 (this version, v2)]
Title:On the Hyperparameters in Stochastic Gradient Descent with Momentum
View PDFAbstract:Following the same routine as [SSJ20], we continue to present the theoretical analysis for stochastic gradient descent with momentum (SGD with momentum) in this paper. Differently, for SGD with momentum, we demonstrate it is the two hyperparameters together, the learning rate and the momentum coefficient, that play the significant role for the linear rate of convergence in non-convex optimization. Our analysis is based on the use of a hyperparameters-dependent stochastic differential equation (hp-dependent SDE) that serves as a continuous surrogate for SGD with momentum. Similarly, we establish the linear convergence for the continuous-time formulation of SGD with momentum and obtain an explicit expression for the optimal linear rate by analyzing the spectrum of the Kramers-Fokker-Planck operator. By comparison, we demonstrate how the optimal linear rate of convergence and the final gap for SGD only about the learning rate varies with the momentum coefficient increasing from zero to one when the momentum is introduced. Then, we propose a mathematical interpretation why the SGD with momentum converges faster and more robust about the learning rate than the standard SGD in practice. Finally, we show the Nesterov momentum under the existence of noise has no essential difference with the standard momentum.
Submission history
From: Bin Shi [view email][v1] Mon, 9 Aug 2021 11:25:03 UTC (359 KB)
[v2] Sun, 11 Sep 2022 05:47:29 UTC (1,315 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.