Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 Aug 2021]
Title:Tensor Yard: One-Shot Algorithm of Hardware-Friendly Tensor-Train Decomposition for Convolutional Neural Networks
View PDFAbstract:Nowadays Deep Learning became widely used in many economic, technical and scientific areas of human interest. It is clear that efficiency of solutions based on Deep Neural Networks should consider not only quality metric for the target task, but also latency and constraints of target platform design should be taken into account. In this paper we present novel hardware-friendly Tensor-Train decomposition implementation for Convolutional Neural Networks together with Tensor Yard - one-shot training algorithm which optimizes an order of decomposition of network layers. These ideas allow to accelerate ResNet models on Ascend 310 NPU devices without significant loss of accuracy. For example we accelerate ResNet-101 by 14.6% with drop by 0.5 of top-1 ImageNet accuracy.
Submission history
From: Vladimir Korviakov [view email][v1] Mon, 9 Aug 2021 13:31:04 UTC (1,320 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.