Mathematics > Rings and Algebras
[Submitted on 4 Aug 2021 (v1), last revised 16 Jul 2022 (this version, v2)]
Title:A gradient method for inconsistency reduction of pairwise comparisons matrices
View PDFAbstract:We investigate an application of a mathematically robust minimization method -- the gradient method -- to the consistencization problem of a pairwise comparisons (PC) matrix. Our approach sheds new light on the notion of a priority vector and leads naturally to the definition of instant priority vectors. We describe a sample family of inconsistency indicators based on various ways of taking an average value, which extends the inconsistency indicator based on the "$\sup$"- norm. We apply this family of inconsistency indicators both for additive and multiplicative PC matrices to show that the choice of various inconsistency indicators lead to non-equivalent consistencization procedures.
Submission history
From: Jean-Pierre Magnot [view email][v1] Wed, 4 Aug 2021 17:09:33 UTC (45 KB)
[v2] Sat, 16 Jul 2022 07:58:42 UTC (46 KB)
Current browse context:
math.RA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.