Mathematics > Optimization and Control
[Submitted on 9 Aug 2021]
Title:Apportionment with Parity Constraints
View PDFAbstract:In the classic apportionment problem the goal is to decide how many seats of a parliament should be allocated to each party as a result of an election. The divisor methods provide a way of solving this problem by defining a notion of proportionality guided by some rounding rule. Motivated by recent challenges in the context of electoral apportionment, we consider the question of how to allocate the seats of a parliament under parity constraints between candidate types (e.g. equal number of men and women elected) while at the same time satisfying party proportionality.
We consider two different approaches for this problem. The first mechanism, that follows a greedy approach, corresponds to a recent mechanism used in the Chilean Constitutional Convention 2021 election. We analyze this mechanism from a theoretical point of view. The second mechanism follows the idea of biproportionality introduced by Balinski and Demange [Math. Program. 1989, Math. Oper. Res. 1989]. In contrast with the classic biproportional method by Balinski and Demange, this mechanism is ruled by two levels of proportionality: Proportionality is satisfied at the level of parties by means of a divisor method, and then biproportionality is used to decide the number of candidates allocated to each type and party. We provide a theoretical analysis of this mechanism, making progress on the theoretical understanding of methods with two levels of proportionality. A typical benchmark used in the context of two-dimensional apportionment is the fair share (a.k.a matrix scaling), which corresponds to an ideal fractional biproportional solution. We provide lower bounds on the distance between these two types of solutions, and we explore their consequences in the context of two-dimensional apportionment.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.