Mathematics > Optimization and Control
[Submitted on 9 Aug 2021 (v1), last revised 3 Feb 2022 (this version, v2)]
Title:The projection onto the cross
View PDFAbstract:We consider the set of pairs of orthogonal vectors in Hilbert space, which is also called the cross because it is the union of the horizontal and vertical axes in the Euclidean plane when the underlying space is the real line. Crosses, which are nonconvex sets, play a significant role in various branches of nonsmooth analysis such as feasibility problems and optimization problems.
In this work, we study crosses and show that in infinite-dimensional settings, they are never weakly (sequentially) closed. Nonetheless, crosses do turn out to be proximinal (i.e., they always admit projections) and we provide explicit formulas for the projection onto the cross in all cases.
Submission history
From: Manish Krishan Lal [view email][v1] Mon, 9 Aug 2021 23:17:16 UTC (16 KB)
[v2] Thu, 3 Feb 2022 02:38:39 UTC (17 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.