Computer Science > Machine Learning
[Submitted on 10 Aug 2021 (v1), last revised 27 Aug 2021 (this version, v2)]
Title:On Procedural Adversarial Noise Attack And Defense
View PDFAbstract:Deep Neural Networks (DNNs) are vulnerable to adversarial examples which would inveigle neural networks to make prediction errors with small perturbations on the input images. Researchers have been devoted to promoting the research on the universal adversarial perturbations (UAPs) which are gradient-free and have little prior knowledge on data distributions. Procedural adversarial noise attack is a data-free universal perturbation generation method. In this paper, we propose two universal adversarial perturbation (UAP) generation methods based on procedural noise functions: Simplex noise and Worley noise. In our framework, the shading which disturbs visual classification is generated with rendering technology. Without changing the semantic representations, the adversarial examples generated via our methods show superior performance on the attack.
Submission history
From: Jun Yan [view email][v1] Tue, 10 Aug 2021 02:47:01 UTC (6,655 KB)
[v2] Fri, 27 Aug 2021 03:35:54 UTC (5,161 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.