Computer Science > Machine Learning
[Submitted on 10 Aug 2021 (v1), last revised 12 Aug 2021 (this version, v2)]
Title:Decentralized Composite Optimization with Compression
View PDFAbstract:Decentralized optimization and communication compression have exhibited their great potential in accelerating distributed machine learning by mitigating the communication bottleneck in practice. While existing decentralized algorithms with communication compression mostly focus on the problems with only smooth components, we study the decentralized stochastic composite optimization problem with a potentially non-smooth component. A \underline{Prox}imal gradient \underline{L}in\underline{EA}r convergent \underline{D}ecentralized algorithm with compression, Prox-LEAD, is proposed with rigorous theoretical analyses in the general stochastic setting and the finite-sum setting. Our theorems indicate that Prox-LEAD works with arbitrary compression precision, and it tremendously reduces the communication cost almost for free. The superiorities of the proposed algorithms are demonstrated through the comparison with state-of-the-art algorithms in terms of convergence complexities and numerical experiments. Our algorithmic framework also generally enlightens the compressed communication on other primal-dual algorithms by reducing the impact of inexact iterations, which might be of independent interest.
Submission history
From: Xiaorui Liu [view email][v1] Tue, 10 Aug 2021 04:54:52 UTC (3,357 KB)
[v2] Thu, 12 Aug 2021 16:50:52 UTC (3,358 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.