Computer Science > Information Theory
[Submitted on 10 Aug 2021 (v1), last revised 2 Feb 2022 (this version, v2)]
Title:Channel Modeling and Channel Estimation for Holographic Massive MIMO with Planar Arrays
View PDFAbstract:In a realistic wireless environment, the multi-antenna channel usually exhibits spatially correlation fading. This is more emphasized when a large number of antennas is densely deployed, known as holographic massive MIMO (multiple-input multiple-output). In the first part of this letter, we develop a channel model for holographic massive MIMO by considering both non-isotropic scattering and directive antennas. With a large number of antennas, it is difficult to obtain full knowledge of the spatial correlation matrix. In this case, channel estimation is conventionally done using the least-squares (LS) estimator that requires no prior information of the channel statistics or array geometry. In the second part of this letter, we propose a novel channel estimation scheme that exploits the array geometry to identify a subspace of reduced rank that covers the eigenspace of any spatial correlation matrix. The proposed estimator outperforms the LS estimator, without using any user-specific channel statistics.
Submission history
From: Özlem Tuğfe Demir [view email][v1] Tue, 10 Aug 2021 12:33:32 UTC (525 KB)
[v2] Wed, 2 Feb 2022 11:12:00 UTC (268 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.