Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Aug 2021 (v1), last revised 29 Nov 2021 (this version, v2)]
Title:R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of Dynamic Scenes
View PDFAbstract:While self-supervised monocular depth estimation in driving scenarios has achieved comparable performance to supervised approaches, violations of the static world assumption can still lead to erroneous depth predictions of traffic participants, posing a potential safety issue. In this paper, we present R4Dyn, a novel set of techniques to use cost-efficient radar data on top of a self-supervised depth estimation framework. In particular, we show how radar can be used during training as weak supervision signal, as well as an extra input to enhance the estimation robustness at inference time. Since automotive radars are readily available, this allows to collect training data from a variety of existing vehicles. Moreover, by filtering and expanding the signal to make it compatible with learning-based approaches, we address radar inherent issues, such as noise and sparsity. With R4Dyn we are able to overcome a major limitation of self-supervised depth estimation, i.e. the prediction of traffic participants. We substantially improve the estimation on dynamic objects, such as cars by 37% on the challenging nuScenes dataset, hence demonstrating that radar is a valuable additional sensor for monocular depth estimation in autonomous vehicles.
Submission history
From: Stefano Gasperini [view email][v1] Tue, 10 Aug 2021 17:57:03 UTC (7,139 KB)
[v2] Mon, 29 Nov 2021 18:29:54 UTC (22,920 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.