Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Aug 2021 (v1), last revised 25 Nov 2021 (this version, v2)]
Title:MetaPose: Fast 3D Pose from Multiple Views without 3D Supervision
View PDFAbstract:In the era of deep learning, human pose estimation from multiple cameras with unknown calibration has received little attention to date. We show how to train a neural model to perform this task with high precision and minimal latency overhead. The proposed model takes into account joint location uncertainty due to occlusion from multiple views, and requires only 2D keypoint data for training. Our method outperforms both classical bundle adjustment and weakly-supervised monocular 3D baselines on the well-established Human3.6M dataset, as well as the more challenging in-the-wild Ski-Pose PTZ dataset.
Submission history
From: Ben Usman [view email][v1] Tue, 10 Aug 2021 18:39:56 UTC (15,983 KB)
[v2] Thu, 25 Nov 2021 23:16:01 UTC (14,631 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.