Computer Science > Sound
[Submitted on 10 Aug 2021]
Title:Depth Infused Binaural Audio Generation using Hierarchical Cross-Modal Attention
View PDFAbstract:Binaural audio gives the listener the feeling of being in the recording place and enhances the immersive experience if coupled with AR/VR. But the problem with binaural audio recording is that it requires a specialized setup which is not possible to fabricate within handheld devices as compared to traditional mono audio that can be recorded with a single microphone. In order to overcome this drawback, prior works have tried to uplift the mono recorded audio to binaural audio as a post processing step conditioning on the visual input. But all the prior approaches missed other most important information required for the task, i.e. distance of different sound producing objects from the recording setup. In this work, we argue that the depth map of the scene can act as a proxy for encoding distance information of objects in the scene and show that adding depth features along with image features improves the performance both qualitatively and quantitatively. We propose a novel encoder-decoder architecture, where we use a hierarchical attention mechanism to encode the image and depth feature extracted from individual transformer backbone, with audio features at each layer of the decoder.
Submission history
From: Kranti Kumar Parida [view email][v1] Tue, 10 Aug 2021 20:26:44 UTC (2,565 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.