Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Aug 2021]
Title:An Image-based Generator Architecture for Synthetic Image Refinement
View PDFAbstract:Proposed are alternative generator architectures for Boundary Equilibrium Generative Adversarial Networks, motivated by Learning from Simulated and Unsupervised Images through Adversarial Training. It disentangles the need for a noise-based latent space. The generator will operate mainly as a refiner network to gain a photo-realistic presentation of the given synthetic images. It also attempts to resolve the latent space's poorly understood properties by eliminating the need for noise injection and replacing it with an image-based concept. The new flexible and simple generator architecture will also give the power to control the trade-off between restrictive refinement and expressiveness ability. Contrary to other available methods, this architecture will not require a paired or unpaired dataset of real and synthetic images for the training phase. Only a relatively small set of real images would suffice.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.