Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Aug 2021 (v1), last revised 10 Sep 2021 (this version, v2)]
Title:MultiTask-CenterNet (MCN): Efficient and Diverse Multitask Learning using an Anchor Free Approach
View PDFAbstract:Multitask learning is a common approach in machine learning, which allows to train multiple objectives with a shared architecture. It has been shown that by training multiple tasks together inference time and compute resources can be saved, while the objectives performance remains on a similar or even higher level. However, in perception related multitask networks only closely related tasks can be found, such as object detection, instance and semantic segmentation or depth estimation. Multitask networks with diverse tasks and their effects with respect to efficiency on one another are not well studied. In this paper we augment the CenterNet anchor-free approach for training multiple diverse perception related tasks together, including the task of object detection and semantic segmentation as well as human pose estimation. We refer to this DNN as Multitask-CenterNet (MCN). Additionally, we study different MCN settings for efficiency. The MCN can perform several tasks at once while maintaining, and in some cases even exceeding, the performance values of its corresponding single task networks. More importantly, the MCN architecture decreases inference time and reduces network size when compared to a composition of single task networks.
Submission history
From: Falk Heuer [view email][v1] Wed, 11 Aug 2021 06:57:04 UTC (2,250 KB)
[v2] Fri, 10 Sep 2021 08:11:38 UTC (2,251 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.