Mathematics > Optimization and Control
[Submitted on 11 Aug 2021 (v1), last revised 19 Jul 2022 (this version, v2)]
Title:An interior point method for nonlinear constrained derivative-free optimization
View PDFAbstract:In this paper we consider constrained optimization problems where both the objective and constraint functions are of the black-box type. Furthermore, we assume that the nonlinear inequality constraints are non-relaxable, i.e. their values and that of the objective function cannot be computed outside of the feasible region. This situation happens frequently in practice especially in the black-box setting where function values are typically computed by means of complex simulation programs which may fail to execute if the considered point is outside of the feasible region. For such problems, we propose a new derivative-free optimization method which is based on the use of a merit function that handles inequality constraints by means of a log-barrier approach and equality constraints by means of a quadratic penalty approach. We prove convergence of the proposed method to KKT stationary points of the problem under quite mild assumptions. Furthermore, we also carry out a preliminary numerical experience on standard test problems and comparison with a state-of-the-art solver which shows efficiency of the proposed method.
Submission history
From: Giampaolo Liuzzi [view email][v1] Wed, 11 Aug 2021 11:04:17 UTC (527 KB)
[v2] Tue, 19 Jul 2022 14:02:43 UTC (984 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.