Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 9 Aug 2021 (v1), last revised 10 Jan 2022 (this version, v2)]
Title:Toward determining the number of observable supermassive black hole shadows
View PDFAbstract:We present estimates for the number of shadow-resolved supermassive black hole (SMBH) systems that can be detected using radio interferometers, as a function of angular resolution, flux density sensitivity, and observing frequency. Accounting for the distribution of SMBHs across mass, redshift, and accretion rate, we use a new semi-analytic spectral energy distribution model to derive the number of SMBHs with detectable and optically thin horizon-scale emission. We demonstrate that (sub)millimeter interferometric observations with ${\sim}0.1$ $\mu$as resolution and ${\sim}1$ $\mu$Jy sensitivity could access ${>}10^6$ SMBH shadows. We then further decompose the shadow source counts into the number of black holes for which we could expect to observe the first- and second-order lensed photon rings. Accessing the bulk population of first-order photon rings requires ${\lesssim}2$ $\mu$as resolution and ${\lesssim}0.5$ mJy sensitivity, while doing the same for second-order photon rings requires ${\lesssim}0.1$ $\mu$as resolution and ${\lesssim}5$ $\mu$Jy sensitivity. Our model predicts that with modest improvements to sensitivity, as many as $\sim$5 additional horizon-resolved sources should become accessible to the current Event Horizon Telescope (EHT), while a next-generation EHT observing at 345 GHz should have access to ${\sim}$3 times as many sources. More generally, our results can help guide enhancements of current arrays and specifications for future interferometric experiments that aim to spatially resolve a large population of SMBH shadows or higher-order photon rings.
Submission history
From: Dominic Pesce [view email][v1] Mon, 9 Aug 2021 18:07:54 UTC (44,715 KB)
[v2] Mon, 10 Jan 2022 14:28:57 UTC (16,273 KB)
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.