Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 11 Aug 2021 (v1), last revised 15 Oct 2021 (this version, v2)]
Title:Large optical modulations during 2018 outburst of MAXI J1820+070 reveal evolution of warped accretion disc through X-ray state change
View PDFAbstract:The black-hole X-ray transient MAXI J1820+07 (=ASSASN-18ey) discovered in March 2018 was one of the optically brightest ever seen, which has resulted in very detailed optical outburst light-curves being obtained. We combine them here with X-ray and radio light-curves to show the major geometric changes the source undergoes. We present a detailed temporal analysis that reveals the presence of remarkably high amplitude (>0.5 mag) modulations, which evolve from the superhump (16.87 h) period towards the presumed orbital (16.45 h) period. These modulations appear ~87d after the outburst began, and follow the Swift/BAT hard X-ray light-curve, which peaks 4 days before the radio flare and jet ejection, when the source undergoes a rapid hard to soft state transition. The optical modulation then moves closer to the orbital period, with a light curve peak that drifts slowly in orbital phase from ~0.8 to ~0.3 during the soft state. We propose that the unprecedentedly large amplitude modulation requires a warp in the disc in order to provide a large enough radiating area, and for the warp to be irradiation-driven. Its sudden turn-on implies a change in the inner disc geometry that raises the hard X-ray emitting component to a height where it can illuminate the warped outer disc regions.
Submission history
From: Jessymol K Thomas [view email][v1] Wed, 11 Aug 2021 21:11:44 UTC (2,194 KB)
[v2] Fri, 15 Oct 2021 15:56:43 UTC (2,230 KB)
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.