Computer Science > Machine Learning
[Submitted on 12 Aug 2021 (v1), last revised 5 Feb 2022 (this version, v3)]
Title:Efficient Local Planning with Linear Function Approximation
View PDFAbstract:We study query and computationally efficient planning algorithms with linear function approximation and a simulator. We assume that the agent only has local access to the simulator, meaning that the agent can only query the simulator at states that have been visited before. This setting is more practical than many prior works on reinforcement learning with a generative model. We propose two algorithms, named confident Monte Carlo least square policy iteration (Confident MC-LSPI) and confident Monte Carlo Politex (Confident MC-Politex) for this setting. Under the assumption that the Q-functions of all policies are linear in known features of the state-action pairs, we show that our algorithms have polynomial query and computational costs in the dimension of the features, the effective planning horizon, and the targeted sub-optimality, while these costs are independent of the size of the state space. One technical contribution of our work is the introduction of a novel proof technique that makes use of a virtual policy iteration algorithm. We use this method to leverage existing results on $\ell_\infty$-bounded approximate policy iteration to show that our algorithm can learn the optimal policy for the given initial state even only with local access to the simulator. We believe that this technique can be extended to broader settings beyond this work.
Submission history
From: Dong Yin [view email][v1] Thu, 12 Aug 2021 04:56:33 UTC (49 KB)
[v2] Thu, 7 Oct 2021 23:40:19 UTC (49 KB)
[v3] Sat, 5 Feb 2022 01:45:38 UTC (58 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.