Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 12 Aug 2021]
Title:Deep Amended Gradient Descent for Efficient Spectral Reconstruction from Single RGB Images
View PDFAbstract:This paper investigates the problem of recovering hyperspectral (HS) images from single RGB images. To tackle such a severely ill-posed problem, we propose a physically-interpretable, compact, efficient, and end-to-end learning-based framework, namely AGD-Net. Precisely, by taking advantage of the imaging process, we first formulate the problem explicitly based on the classic gradient descent algorithm. Then, we design a lightweight neural network with a multi-stage architecture to mimic the formed amended gradient descent process, in which efficient convolution and novel spectral zero-mean normalization are proposed to effectively extract spatial-spectral features for regressing an initialization, a basic gradient, and an incremental gradient. Besides, based on the approximate low-rank property of HS images, we propose a novel rank loss to promote the similarity between the global structures of reconstructed and ground-truth HS images, which is optimized with our singular value weighting strategy during training. Moreover, AGD-Net, a single network after one-time training, is flexible to handle the reconstruction with various spectral response functions. Extensive experiments over three commonly-used benchmark datasets demonstrate that AGD-Net can improve the reconstruction quality by more than 1.0 dB on average while saving 67$\times$ parameters and 32$\times$ FLOPs, compared with state-of-the-art methods. The code will be publicly available at this https URL.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.