Mathematics > Optimization and Control
[Submitted on 12 Aug 2021]
Title:Optimal actuator design via Brunovsky's normal form
View PDFAbstract:In this paper, by using the Brunovsky normal form, we provide a reformulation of the problem consisting in finding the actuator design which minimizes the controllability cost for finite-dimensional linear systems with scalar controls. Such systems may be seen as spatially discretized linear partial differential equations with lumped controls. The change of coordinates induced by Brunovsky's normal form allows us to remove the restriction of having to work with diagonalizable system dynamics, and does not entail a randomization procedure as done in past literature on diffusion equations or waves. Instead, the optimization problem reduces to a minimization of the norm of the inverse of a change of basis matrix, and allows for an easy deduction of existence of solutions, and for a clearer picture of some of the problem's intrinsic symmetries. Numerical experiments help to visualize these artifacts, indicate further open problems, and also show a possible obstruction of using gradient-based algorithms - this is alleviated by using an evolutionary algorithm.
Submission history
From: Borjan Geshkovski [view email][v1] Thu, 12 Aug 2021 09:50:02 UTC (20,867 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.