Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 12 Aug 2021]
Title:Optical Microlensing by Primordial Black Holes with IACTs
View PDFAbstract:Primordial black holes (PBHs), hypothesized to be the result of density fluctuations during the early universe, are candidates for dark matter. When microlensing background stars, they cause a transient apparent enhancement of the flux. Measuring these signals with optical telescopes is a powerful method to constrain the PBH abundance in the range of $10^{-10}\,M_{\odot}$ to $10^{1}\,M_{\odot}$. Especially for galactic stars, the finiteness of the sources needs to be taken into account. For low PBH masses (in this work $\lesssim 10^{-8}\,M_{\odot}$) the average duration of the detectable event decreases with the mass $\langle t_e\rangle \propto M_{\mathrm{PBH}}$. For $M_{\mathrm{PBH}}\approx 10^{-11}\,M_{\odot}$ we find $\langle t_e\rangle \lesssim\,1 \mathrm{s}$. For this reason, fast sampling detectors may be required as they could enable the detection of low mass PBHs. Current limits are set with sampling speeds of 2 minutes to 24 hours in the optical regime. Ground-based Imaging Atmospheric Cherenkov telescopes (IACTs) are optimized to detect the $\sim$ns long optical Cherenkov signals induced by atmospheric air showers. As shown recently, the very-large mirror area of these instruments provides very high signal to noise ratio for fast optical transients ($\ll 1\,$s) such as asteroid occultations. We investigate whether optical observations by IACTs can contribute to extending microlensing limits to the unconstrained mass range $M_{\mathrm{PBH}}<10^{-10}M_\odot$. We discuss the limiting factors to perform these searches for each telescope type. We calculate the rate of expected detectable microlensing events in the relevant mass range for the current and next-generation IACTs considering realistic source parameters.
Submission history
From: Konstantin Pfrang [view email][v1] Thu, 12 Aug 2021 10:05:11 UTC (2,949 KB)
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.