Electrical Engineering and Systems Science > Systems and Control
[Submitted on 12 Aug 2021]
Title:Automatic Generation Control Considering Uncertainties of the Key Parameters in the Frequency Response Model
View PDFAbstract:The highly fluctuated renewable generations and electric vehicles have undergone tremendous growth in recent years. The majority of them are connected to the grid via power electronic devices, resulting in wide variation ranges for several key parameters in the frequency response model (FRM) such as system inertia and load damping factor. In this paper, an automatic generation control (AGC) method considering the uncertainties of these key parameters is proposed. First, the historical power system operation data following large power disturbances are used to identify the FRM key parameters offline. Second, the offline identification results and the normal operation data prior to the occurrence of the disturbance are used to train the online probability estimation model of the FRM key parameters. Third, the online estimation results of the FRM key parameters are used as the input, and the model predictive-based AGC signal optimization method is developed based on distributionally robust optimization (DRO) technology. Case studies conducted on the IEEE 118-Bus System show that the proposed AGC method outperforms the widely utilized PI-based control method in terms of performance and efficiency.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.