Computer Science > Computer Vision and Pattern Recognition
This paper has been withdrawn by Duo Li
[Submitted on 12 Aug 2021 (v1), last revised 16 Aug 2021 (this version, v2)]
Title:m-RevNet: Deep Reversible Neural Networks with Momentum
No PDF available, click to view other formatsAbstract:In recent years, the connections between deep residual networks and first-order Ordinary Differential Equations (ODEs) have been disclosed. In this work, we further bridge the deep neural architecture design with the second-order ODEs and propose a novel reversible neural network, termed as m-RevNet, that is characterized by inserting momentum update to residual blocks. The reversible property allows us to perform backward pass without access to activation values of the forward pass, greatly relieving the storage burden during training. Furthermore, the theoretical foundation based on second-order ODEs grants m-RevNet with stronger representational power than vanilla residual networks, which potentially explains its performance gains. For certain learning scenarios, we analytically and empirically reveal that our m-RevNet succeeds while standard ResNet fails. Comprehensive experiments on various image classification and semantic segmentation benchmarks demonstrate the superiority of our m-RevNet over ResNet, concerning both memory efficiency and recognition performance.
Submission history
From: Duo Li [view email][v1] Thu, 12 Aug 2021 17:14:32 UTC (4,231 KB)
[v2] Mon, 16 Aug 2021 13:04:04 UTC (1 KB) (withdrawn)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.