Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Aug 2021]
Title:Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision
View PDFAbstract:The abundance and richness of Internet photos of landmarks and cities has led to significant progress in 3D vision over the past two decades, including automated 3D reconstructions of the world's landmarks from tourist photos. However, a major source of information available for these 3D-augmented collections---namely language, e.g., from image captions---has been virtually untapped. In this work, we present WikiScenes, a new, large-scale dataset of landmark photo collections that contains descriptive text in the form of captions and hierarchical category names. WikiScenes forms a new testbed for multimodal reasoning involving images, text, and 3D geometry. We demonstrate the utility of WikiScenes for learning semantic concepts over images and 3D models. Our weakly-supervised framework connects images, 3D structure, and semantics---utilizing the strong constraints provided by 3D geometry---to associate semantic concepts to image pixels and 3D points.
Submission history
From: Hadar Averbuch-Elor [view email][v1] Thu, 12 Aug 2021 17:16:49 UTC (22,089 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.