Electrical Engineering and Systems Science > Systems and Control
[Submitted on 12 Aug 2021]
Title:Hierarchical Power Flow Control in Smart Grids: Enhancing Rotor Angle and Frequency Stability with Demand-Side Flexibility
View PDFAbstract:Large-scale integration of renewables in power systems gives rise to new challenges for keeping synchronization and frequency stability in volatile and uncertain power flow states. To ensure the safety of operation, the system must maintain adequate disturbance rejection capability at the time scales of both rotor angle and system frequency dynamics. This calls for flexibility to be exploited on both the generation and demand sides, compensating volatility and ensuring stability at the two separate time scales. This article proposes a hierarchical power flow control architecture that involves both transmission and distribution networks as well as individual buildings to enhance both small-signal rotor angle stability and frequency stability of the transmission network. The proposed architecture consists of a transmission-level optimizer enhancing system damping ratios, a distribution-level controller following transmission commands and providing frequency support, and a building-level scheduler accounting for quality of service and following the distribution-level targets. We validate the feasibility and performance of the whole control architecture through real-time hardware-in-loop tests involving real-world transmission and distribution network models along with real devices at the Stone Edge Farm Microgrid.
Current browse context:
eess.SY
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.