Mathematics > Optimization and Control
[Submitted on 13 Aug 2021 (v1), last revised 26 Apr 2023 (this version, v2)]
Title:Exact Convergence Rates of Alternating Projections for Nontransversal Intersections
View PDFAbstract:We consider the convergence rate of the alternating projection method for the nontransversal intersection of a semialgebraic set and a linear subspace. For such an intersection, the convergence rate is known as sublinear in the worst case. We study the exact convergence rate for a given semialgebraic set and an initial point, and investigate when the convergence rate is linear or sublinear. As a consequence, we show that the exact rates are expressed by multiplicities of the defining polynomials of the semialgebraic set, or related power series in the case that the linear subspace is a line, and we also decide the convergence rate for given data by using elimination theory. Our methods are also applied to give upper bounds for the case that the linear subspace has the dimension more than one. The upper bounds are shown to be tight by obtaining exact convergence rates for a specific semialgebraic set, which depend on the initial points.
Submission history
From: Yoshiyuki Sekiguchi [view email][v1] Fri, 13 Aug 2021 02:01:56 UTC (53 KB)
[v2] Wed, 26 Apr 2023 06:31:26 UTC (1,593 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.