Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 13 Aug 2021]
Title:VERITAS Dark Matter search in dwarf spheroidal galaxies: an extended analysis
View PDFAbstract:Dark matter (DM) is largely believed to be the dominant component of the matter content of the Universe. Astronomical measurements can be utilized to search for Standard Model (SM) annihilation or decay products of DM, complementing direct and collider-based searches. Among DM particle candidates, Weakly Interacting Massive Particles (WIMPs) are an attractive one. Their decay or annihilation could produce secondary particles including very-high-energy (VHE: $E>100$ GeV) gamma rays, which could be detected by imaging atmospheric Cherenkov telescopes (IACTs). One of the most favourable target classes for DM searches are dwarf spheroidal galaxies (dSphs), dark matter-dominated objects with a negligible predicted gamma-ray emission due to apparent absence of gas and on-going star formation. IACTs, whose point spread functions (PSFs, defined as 68\% containment radius) are typically $0.1^{\circ}$ at 1 TeV, have the necessary angular resolution to detect extended emission from some dSphs. Thus, an extended-source analysis may give an improvement to DM sensitivity, compared to a point-source analysis. In this work, we used observations made since 2007 to 2013 by VERITAS, an array of four imaging atmospheric Cherenkov telescopes sensitive to VHE gamma rays in the 100 GeV - 30 TeV energy range. We performed an unbinned maximum likelihood estimation incorporating the dSph angular profiles of four dSphs and tested its effectiveness against the traditional spectral analysis.
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.