Electrical Engineering and Systems Science > Systems and Control
[Submitted on 13 Aug 2021]
Title:Trajectory Planning Under Environmental Uncertainty With Finite-Sample Safety Guarantees
View PDFAbstract:We tackle the problem of trajectory planning in an environment comprised of a set of obstacles with uncertain time-varying locations. The uncertainties are modeled using widely accepted Gaussian distributions, resulting in a chance-constrained program. Contrary to previous approaches however, we do not assume perfect knowledge of the moments of the distribution, and instead estimate them through finite samples available from either sensors or past data. We derive tight concentration bounds on the error of these estimates to sufficiently tighten the chance-constraint program. As such, we provide provable guarantees on satisfaction of the chance-constraints corresponding to the nominal yet unknown moments. We illustrate our results with two autonomous vehicle trajectory planning case studies.
Submission history
From: Vasileios Lefkopoulos [view email][v1] Fri, 13 Aug 2021 14:04:49 UTC (62 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.