General Relativity and Quantum Cosmology
[Submitted on 13 Aug 2021]
Title:Ghosts without runaway
View PDFAbstract:We present a simple class of mechanical models where a canonical degree of freedom interacts with another one with a negative kinetic term, i.e. with a ghost. We prove analytically that the classical motion of the system is completely stable for all initial conditions, notwithstanding that the conserved Hamiltonian is unbounded from below and above. This is fully supported by numerical computations. Systems with negative kinetic terms often appear in modern cosmology, quantum gravity and high energy physics and are usually deemed as unstable. Our result demonstrates that for mechanical systems this common lore can be too naive and that living with ghosts can be stable.
Current browse context:
gr-qc
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.